Bayesian Online Multitask Learning of Gaussian Processes
نویسندگان
چکیده
منابع مشابه
Online Multitask Learning
We study the problem of online learning of multiple tasks in parallel. On each online round, the algorithm receives an instance and makes a prediction for each one of the parallel tasks. We consider the case where these tasks all contribute toward a common goal. We capture the relationship between the tasks by using a single global loss function to evaluate the quality of the multiple predictio...
متن کاملActive Online Multitask Learning
In this paper, we propose an online multitask learning framework where the weight vectors are updated in an adaptive fashion based on inter-task relatedness. Our work is in contrast with the earlier work on online multitask learning (Cavallanti et al., 2008) where the authors use a fixed interaction matrix of tasks to derive (fixed) update rules for all the tasks. In this work, we propose to up...
متن کاملBayesian Multitask Distance Metric Learning
We present a Bayesian approach for jointly learning distance metrics for a large collection of potentially related learning tasks. We assume there exists a relatively smaller set of basis distance metrics and the distance metric for each task is a sparse, positively weighted combination of these basis distance metrics. The set of basis distance metrics and the combination weights are learned fr...
متن کاملBayesian Multitask Inverse Reinforcement Learning
We generalise the problem of inverse reinforcement learning to multiple tasks, from multiple demonstrations. Each one may represent one expert trying to solve a different task, or as different experts trying to solve the same task. Our main contribution is to formalise the problem as statistical preference elicitation, via a number of structured priors, whose form captures our biases about the ...
متن کاملOnline Multitask Relative Similarity Learning
Relative similarity learning (RSL) aims to learn similarity functions from data with relative constraints. Most previous algorithms developed for RSL are batch-based learning approaches which suffer from poor scalability when dealing with realworld data arriving sequentially. These methods are often designed to learn a single similarity function for a specific task. Therefore, they may be sub-o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Pattern Analysis and Machine Intelligence
سال: 2010
ISSN: 0162-8828
DOI: 10.1109/tpami.2008.297